高温电加热过程模拟与优化的研究
随着新材料工业的发展,工业电加热设备应用越来越广泛。严格控制产品质量、降低生产能耗、保障生产安全是工业电加热设备技术进步的不懈追求。本文以过程系统工程理论为指导,采用有限元方法对高温电阻炉加热过程进行了较系统的数学模拟和工艺优化研究,以期为高温电加热过程的发展有所裨益。
论文评述了过程系统工程、有限元法以及艾奇逊式电阻炉的特点及发展。介绍了开源有限元模拟分析软件FEPG;讨论了高温电阻炉的进展,重点分析了碳化硅合成炉和石墨化炉在炉型改进、工艺提高和模拟优化方面的国内外研究动态。在分析电阻炉加热过程中所存在问题的基础上,提出了本文的研究方向。
通过对艾奇逊式电阻炉的炉型分析,应用虚功原理,建立了高温电阻炉在二维动态非线性传热有限元模型;同时,对反应过程产生气体的情况进行了分析,建立了二维传热-渗流耦合的有限元模型;结合炉体和部件的应力和形变情况,又建立了三维的传热-形变-应力耦合的有限元模型。因为炉料由多种颗粒组成,采用混合模型将其简化为分层拟均相模型,并采用修正的热逾渗理论模型进行描述。通过对直通电石墨化炉的有限元计算,并与现有文献比较,结果表明:本文所建立的传热有限元模型和多种颗粒组成炉料的有效导热系数的计算方法是有效的。
采用建立的传热有限元模型,对一有效宽高为2.1m×1.9m、炉芯宽高为0.35m×0.6m、单位体积炉芯负荷8.5×105W/m3的艾奇逊炉碳化硅生产过程进行了模拟和分析:
(1)具体分析了炉内动态的温度场分布、不同时刻炉料水平线上温度梯度变化、热流密度变化情况,系统的考察了炉内产品产量和单位产品能耗随生产进行的变化趋势。结果表明产品产量随时间线性增长,单位产品能耗呈现从高到低,然后平稳,最后上升的变化趋势。考察炉芯表面温度可知其与产品能耗密切相关。能耗较低的平稳阶段对应于从炉芯表面温度上出现了2600℃温度点,到全部表面温度均超过2600℃。这意味着该阶段是炉芯热效率最高的阶段。炉芯表面完全达到碳化硅分解温度的时刻,正是能耗较低产量较高的时刻,因此也是生产停炉的最佳时刻。对温度梯度和热流密度进行分析,发现温度梯度最大的阶段出现在合成碳化硅的温度区域内,而且随着时间增长炉表面散热的热流密度也增长。
(2)喷炉问题是碳化硅炉生产中迄今仍没有完全解决的问题。本文应用传热-渗流耦合的有限元模型,分别系统地考察了正常生产条件、增大炉芯功率和增加密度导致渗流系数变小三种条件下,炉底气体压力和炉表气体流量变化。发现了喷炉的具体原因:1)炉料配置不合理,导致气体渗流系数变小。2)功率过高,导致化学反应过快造成炉产生的气体不能及时渗透出去。
(3)石墨电极在碳化硅或石墨化炉生产过程中,部分在炉体外部,部分与炉内高温物料接触,并且自身也会通电发热。为考察电极在这种情况下是否发生损坏,应用传热-形变-应力耦合的有限元模型进行过程分析。具体考察了电极内部和外部的温度分布、电极的整体形变和电极的主应力分布的情况。结果显示:凸出炉体外部电极表面温度不超过90℃,不会发生氧化反应导致的损耗;电极整体温差小于20℃,不会因为热应力和体积力作用导致电极发生形变。因此电极在正常生产条件下不会发生损坏现象。为进一步加强电极保护,根据计算结果提出了电极保护涂层的厚度的工艺方案。
为解决现有艾奇逊碳化硅炉生产能耗高、有喷炉安全隐患的问题。本文以系统过程工程理论为指导,应用传热一渗流耦合有限元模型,对有效宽高2.3m×2.1m、炉芯宽高0.4m×0.6m、单位体积炉芯负荷8.8×105W/m3的碳化硅炉型生产过程进行模拟。作者将生产过程分为三个阶段:1)生产前期,热能主要用于炉体预热、碳化硅合成尚未开始或反应微弱,该过程应尽快完成以减少散热损失。2)生产中期,炉料开始反应到炉芯表面局部达到2600℃,该阶段应尽快完成,但要注意避免发生喷炉。3)生产后期,从炉芯表面局部达到到全部超过2600℃的阶段,该阶段应在保证碳化硅继续生产的同时控制碳化硅的分解和炉表的散热。在对三个阶段分析基础上,以喷炉压力为主要限制条件,建立以能耗最小化为目标函数的优化模型和简化的优化策略,获得了优化的功率曲线。计算结果表明应用优化的功率曲线可避免喷炉发生;选择不同的停炉时间,可分别获得能耗降低约8%且产量增加3%和增产约12%且能耗降低约5%的两种较优的结果。
现有文献表明,石墨化炉和碳化硅炉由于炉料预热和炉表散热,单炉热效率仅为50%左右,热损失巨大。在对两炉有限元分析的基础上,提出了直通电石墨化炉联产碳化的新工艺,以上述单位体积炉芯负荷为8.5×105W/m3的炉型为例。研究表明:扣除石墨生产耗能后,生产碳化硅的能耗为原碳化硅炉的50%,产量为54-68%;此外联产炉还减少了总的废气排放;为解决现有炉型保温效果不佳、通气性差容易发生喷炉、产品品质不高、能耗高和粉尘污染等问题,本文提出了一种增强保温的并联式、全透气的生产碳化硅的新炉型。对该炉型不仅增强了保温效果,而且还彻底解决了喷炉问题,使生产中产生的气体不仅及时的排放出去而且还为炉体的保温做了贡献,新炉型还可配合气体收集装置将气体汇总处理减少了环境污染,该炉型可以由现有炉型经简单改造而成,改造后能耗降低达15-17%,节能效果显著。
电阻炉;石墨;高温电加热;温度场分布;有限元法
中国海洋大学
博士
海洋化学工程与技术
胡仰栋
2011
中文
TK175
137
2011-10-31(万方平台首次上网日期,不代表论文的发表时间)