碳纳米管中冰/水相变的分子动力学模拟
随着能源危机的到来,储能材料和储能技术得以迅速发展。而相变储能材料是众多储能材料中应用较为广泛的一种,其具有储能密度大、输出的能量与温度比较稳定等优点,因此,对相变储能材料的研究成为当今材料研究的焦点。而碳纳米管中冰/水发生相变时能量具有突变,为其成为相变储能材料提供了可能。为了较好地利用受限于碳纳米管中的冰/水作为相变储能材料,我们需要更多地了解其静态结构性质以及动态性质等。本文是利用分子动力学方法,对(14,0)“zigzag”型碳纳米管中冰/水的相变进行模拟计算。计算结果通过原子密度分布函数、氢键方向分布函数以及均方位移等来分析受限于碳纳米管中冰/水相变前后的变化以及温度和压强因素对这些冰/水的影响。
本文对相变及相变原理的基础理论做了论述,阐明了一些有关相变的定义、分类和相变过程的机理。同时,对分子动力学模拟进行了较全面的说明,如:力场的选取、长程作用力的计算、计算系统模型的简化、常见的水分子力场、积分步长的选取、周期性边界条件等。本文的模拟过程包括三个方面:一是温度设定为240K的等温增大压强过程,压强值从500MPa到1GPa过程,其间隔为25MPa,从1GPa到11GPa过程,间隔值为1GPa:二是压强值设定为200MPa的等压降温过程,温度从300K下降,开始间隔值为10K,当降低到260K后,间隔值变为5K;三是压强值设定为500MPa的等压降温过程,温度变化情况如同上述二。模拟结果表明:等温(240K)增压过程,575MPa时水分子由四环相变成五环结构,继续增大到超高压(5GPa)时开始出现中心水分子链;等压(500MPa)降温过程中,当降到255K时非晶水相变成晶体四分子水环结构,继续降低温度到220K时又相变为五分子水环结构。通过水分子的径向密度分布函数和偶极矩方向分布函数都说明五分子水环结构比四分子水环结构更趋于有序。由水分子中原子的轴向密度分布函数,可以考察水分子在轴向形成的层次数及大致计算管内水分子个数,并可以区分等温增压过程还是等压降温过程(500MPa)形成的类似相变。碳纳米管中水分子的氢氧键方向分布函数说明在本文设定的条件下形成氢键时只有一个氢氧键参与。等温增压过程,管内水分子的氢键数会出现一个峰值:而等压降温过程,水分子的氢键数却不断增多。等温增压过程,管内水分子的扩散系数一直变小,而等压降温过程却需要在特定压强值下才呈现一定规律,并且四分子水环的轴向扩散能力要强于五分子水环结构。
冰/水相变;碳纳米管;分子动力学;模拟计算
中国海洋大学
硕士
凝聚态物理
董顺乐
2011
中文
TB383;TB301
72
2011-10-31(万方平台首次上网日期,不代表论文的发表时间)