机器学习在模拟电路故障诊断中的应用研究
模拟电路由于本身的容差性、非线性和难以模型化等特点,导致故障诊断工作异常困难。因此,模拟电路故障诊断是一个富有挑战性的研究课题。超深亚微米半导体技术的进展,推动了超大规模模拟电路和模数混合电路的发展,对模拟电路故障诊断提出了新的挑战,传统的故障诊断理论和方法已经难以应对。作为计算智能技术的一个分支--机器学习,为模拟电路故障诊断提供了一条有效的途径,受到普遍关注和重视。
针对模拟电路的特点,本文使用了机器学习算法来进行模拟电路故障诊断。通过从工程实践中探索得来的诊断方法,提出了一套基于模式识别理论的诊断系统,并使用一系列模型评估标准对机器学习模型的诊断性能进行了客观评估。
本文从选定测试电路开始,对故障集的选择、解决电路容差的Monte Carlo仿真方法、基于PCA的特征提取以及机器学习算法应用等进行了探讨,详细地阐述了每个环节是如何进行的。然后在此基础上提出了一套系统化的诊断流程,使得机器学习算法可以顺利地应用到模拟电路的工业化自动故障诊断中。此方案可以适应模拟电路的容差性、噪声性、非线性和难以建模等特点。
随后运用一系列模型评估标准对有代表性的机器学习算法建立的诊断模型进行客观公正地评估。目前,对学习算法进行综合性比较的研究比较少。不同的领域,对学习算法有不同的评估标准。本文整理了适合于故障诊断领域的评估标准,分别对决策树、神经网络和支持向量机算法在故障诊断领域的应用效果做出了评估。针对两个国际标准电路的故障模拟仿真结果,对三种机器学习算法的建模性能进行了点评。
机器学习;模式识别;模拟电路;故障诊断;模型评估
中国海洋大学
硕士
信号与信息处理
丁香乾
2009
中文
TN710
72
2009-09-28(万方平台首次上网日期,不代表论文的发表时间)