学位专题

目录>
<
DOI:10.7666/d.D328845

新型金属有机骨架/多孔氧化铝复合膜的制备、结构表征和氢气、甲烷分离性能研究

杨启鹏
中国海洋大学
引用
一般认为,H2是最符合人类可持续发展要求的绿色能源。由于自然界中仅存在极少量的游离态H2,因此在工业生产中通常采用CH4裂解法制备H2,其中H2与CH4气体分离是制备高纯H2的关键工艺技术。目前,一般采用变压吸附法分离H2与CH4,但由于选择性较低,难以生产出高纯H2,同时还存在能耗大、成本高等问题。膜分离技术是有着广泛发展前景的气体分离高新技术,但传统的膜材料都难以满足高纯H2制备技术的要求。例如聚砜膜、醋酸纤维膜等有机聚合物膜气透性较低,结构稳定性较差。炭分子筛膜等无机膜具有良好的热稳定性,但由于孔道结构很难控制,导致分离选择性较差。因此,在高纯H2制备工业化生产技术发展中,迫切需要开发新型膜材料。  二十世纪末,人们开发出金属有机骨架化合物(MOF),由于其具有结构热稳定性高、孔道结构可控等特点,在包括气体高选择性分离在内的诸多领域展现出广泛而良好的应用前景。目前,国际上关于气体分离MOF膜的研究尚处于起步阶段,即使关于MOF膜制备的文献报道也不多。对于理想的H2/CH4分离膜技术,既要具有MOF材料的高选择性和结构热稳定性等特性,又要具有无机膜材料较强的机械强度等特性。因此,本文研究目的是针对CH4裂解法高纯H2制备中,H2和CH4气体分离的关键工业技术,研制开发同时具有极高选择性、较高结构热稳定性、较大机械强度等特性的新型MOF/多孔氧化铝复合膜。该研究对于扩展 MOF膜材料在混合气体中高选择性分离H2具有实际应用价值,同时对于开发新型MOF材料,也具有重要的理论意义,研究结果主要体现在三个方面:  一、新型H2/CH4气体分离MOF膜的晶体合成、结构表征及热稳定性。  对于理想的H2/CH4气体分离MOF功能材料,不仅要求在结构上具有高选择分离性能,具有孔道结构且孔径应介于H2和CH4气体分子动力学直径之间,而且要求具有良好的结构热稳定性,在373-473K温度范围内仍能保持稳定的孔道结构。对此,本文选择5种配体,采用反应物浓度0.003-0.05mol/L,溶剂为水、甲醇或DMF,实验温度298-453K,反应周期4-7天等实验条件,共合成出8种新型MOF晶体材料,结果如下:  1、应用单晶衍射方法测量表明,配合物1: Cu(ClO4)2.C16H16N2O5、2:[C16H18N2O5].[ZnCl4]、3:[C16H17N2O5]·[ZnCl3]、4:[C16H17N2O5]·[ZnCl3]和5:Cu2(ClO4)2(OH)2·(C16H16N2O5)2·2CH3OH具有零维密实的晶体结构。配合物6:HgI2·C18H24N6O4具有一维晶体结构,在 C轴方向形成一维孔道,孔径约为0.5nm。配合物7:Co(C10H8N2).(CHO2)2为三维密实晶体结构。配合物8:Ni1.5(C10H8N2)1.5.C12H28O9P3.(H2O)3具有三维晶体结构,属四方晶系,沿C轴方向形成一维孔道结构,孔径为0.38nm。在八种新型MOF晶体材料中,配合物6和8具有孔道结构,但配合物6孔径为CH4气体动力学直径1.3倍,只有配合物8的孔径大小正好介于H2和CH4气体分子动力学直径之间。  2、应用热重分析方法检测表明,在氮气气氛下,配合物8在低于453K时,能够保持结构稳定,具有较强的结构热稳定性。  3、配合物8晶体材料对单组分气体吸附实验表明,在压力0-1000mbar,温度303K条件下,由于H2气体分子与MOF材料间的作用力极弱,导致晶体材料对H2气体吸附量为零;在温度303K,压力1000mbar下,晶体材料对分子动力学直径小于孔径的CO2吸附量约为2 wt%。然而,在273K和303K温度条件下,由于CH4分子动力学直径大于MOF孔径,CH4无法进入孔道,导致MOF晶体材料对CH4的吸附量为零。这说明,配合物8晶体结构对气体分子具有很强的分子筛筛分性能。  二、多孔氧化铝膜基底材料制备及H2/CH4气透性。  对于高选择性H2/CH4气体分离的MOF复合膜,理想的无机基底材料不仅要与MOF材料有较强的表面附着力,而且要具有较强的机械强度和良好的气透性,这些主要决定于基底表面性质、厚度及孔径大小。一般而言,镍网、多孔陶瓷片、透气钢片和多孔氧化铝膜等是常用的无机基底材料。应用原位法制备MOF/无机基底材料复合膜,实验结果表明,多孔氧化铝膜为最优基底材料。多孔氧化铝膜厚度为77.4μm,孔径为25nm时,可以同时满足复合膜在气透性和机械强度两方面的要求。其耐压强度大于1Mpa,H2和CH4气透率分别为5.607×10-5mol/Pa·m2·s和2.385×10-5mol/Pa·m2·s。  三、新型MOF/多孔氧化铝复合膜制备和H2/CH4气体分离性能。  理想的MOF/多孔氧化铝复合膜在分离性能上应具有H2/CH4气体分离性高和结构热稳定性高,在物理性质上应具有厚度可控且均一、耐压强度好和气透性适中等特性,具体结果如下:  1、采用平板真空法制备新型MOF/多孔氧化铝复合膜,MOF涂膜液浓度及涂布方式、操作温度及不同镍盐等对复合膜结构都产生不同程度的影响。实验表明,MOF涂膜液浓度在0.2-0.7%之间均可以得到完整复合膜;反应温度由413K升高到433K,复合膜的厚度由450μm降低到200μm;采用Ni(CH3COO)2.4H2O作为镍盐得到复合膜厚度为200μm,但晶体存在纵向堆积。  2、综合考虑MOF复合膜质量,选择MOF晶种层厚度是450μm,多孔氧化铝膜厚度77.4μm的MOF/多孔氧化铝复合膜作为气体测试膜。复合膜耐压强度大于1MPa,在温度298K时,单组分H2和CH4气体渗透率实验表明,H2气透率为1.44×10-9mol/Pa·m2·s,并且在压差0.1-0.3MPa间几乎不随压力变化,而CH4气透率为零,无法透过该复合膜。  3、在298-373K温度范围内测试H2/CH4混合气体渗透率。实验表明,H2气透率随温度的升高逐渐降低,CH4气透率为零,这说明该复合膜对H2/CH4混合气体有极高的选择性,可以用来制备高纯H2。  综合上述研究结果,新型MOF/多孔氧化铝复合膜具有良好结构热稳定性、较强的耐压强度及极高的H2/CH4气体分离性能,有望在CH4裂解法高纯H2制备中得到应用。其中,科学创新点主要是在国际上首次采用平板真空法制备出同时具有较强耐压强度、高结构热稳定性及极高H2/CH4选择性的新型MOF/多孔氧化铝复合膜。研究特色主要是得到了MOF/多孔氧化铝复合膜制备技术参数,为MOF/多孔氧化铝复合膜在高纯H2制备工业化技术开发中,提供了必要的理论指导及技术基础。

金属有机骨架;多孔氧化铝;复合膜;结构表征;气体分离;热稳定性

中国海洋大学

博士

化学化工

王修林;赵学波

2013

中文

TQ028.8;TQ028.1

184

2013-09-02(万方平台首次上网日期,不代表论文的发表时间)